
Advanced Graphics

Implicit Surfaces, Voronoi Diagrams, Voxels and more

Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd

Implicit surfaces
Implicit surface modeling(1) is a
way to produce very ‘organic’ or
‘bulbous’ surfaces very quickly
without subdivision or NURBS.
Uses of implicit surface
modelling:
● Organic forms and nonlinear

shapes
● Scientific modeling (electron

orbitals, gravity shells in space,
some medical imaging)

● Muscles and joints with skin
● Rapid prototyping
● CAD/CAM solid geometry

(1) AKA “metaball modeling”, “force
functions”, “blobby modeling”…

How it works

The user controls a set of control points, like
NURBS; each point in space generates a field of
force, which drops off as a function of distance
from the point (like gravity weakening with
distance.)

This 3D field of forces defines an implicit surface: the
set of all the points in space where some
mathematical function (in this case, the value of the
force field) has a particular key value.

Force = 2

1

0.5

0.25 ...

A few popular force field functions:
● “Blobby Molecules” – Jim Blinn

F(r) = a e-br2

● “Metaballs” – Jim Blinn
 a(1- 3r2 / b2) 0 ≤ r < b/3

F(r) = (3a/2)(1-r/b)2 b/3 ≤ r < b
 0 b ≤ r

● “Soft Objects” – Wyvill & Wyvill
F(r) = a(1 - 4r6/9b6 + 17r4/9b4 - 22r2 / 9b2)

Force functions

Comparison of force functions

Discovering the surface

An octree is a recursive subdivision of
space which “homes in” on the surface,
from larger to finer detail.
● An octree encloses a cubical volume in space.

You evaluate the force function F(v) at each
vertex v of the cube.

● As the octree subdivides and splits into smaller
octrees, only the octrees which contain some of
the surface are processed; empty octrees are
discarded.

Polygonizing the surface

To display a set of octrees, convert the octrees into polygons.
● If some corners are “hot” (above the force limit) and others are

“cold” (below the force limit) then the implicit surface crosses the
cube edges in between.

● The set of midpoints of adjacent crossed edges forms one or more
rings, which can be triangulated. The normal is known from the
hot/cold direction on the edges.

To refine the polygonization, subdivide recursively; discard any
child whose vertices are all hot or all cold.

Polygonizing the surface

Recursive subdivision (on a quadtree):

Polygonizing the surface
There are fifteen possible
configurations (up to symmetry) of
hot/cold vertices in the cube. →
● With rotations, that’s 256 cases.

Beware: there are ambiguous cases in
the polygonization which must be
addressed separately. ↓

Images courtesy of Diane Lingrand

Polygonizing the surface

One way to overcome the ambiguities
that arise from the cube is to
decompose the cube into tretrahedra.

● A common decomposition is into
five tetrahedra. →

● Caveat: need to flip every other
cube. (Why?)

● Can also split into six.
Another way is to do the subdivision

itself on tetrahedra—no cubes at all.
Image from the Open Problem Garden

Smoothing the surface

Improved edge vertices
● The naïve implementation builds polygons whose

vertices are the midpoints of the edges which lie
between hot and cold vertices.

● The vertices of the implicit surface can be more
closely approximated by points linearly interpolated
along the edges of the cube by the weights of the
relative values of the force function.
● t = (0.5 - F(P1)) / (F(P2) - F(P1))
● P = P1 + t (P2 - P1)

Implicit surfaces -- demo

Marching cubes
An alternative to octrees if you only want
to compute the final stage is the marching
cubes algorithm (Lorensen & Cline, 1985):

● Fire a ray from any point known to be
inside the surface.

● Using Newton’s method or binary search,
find where the ray crosses the surface.

● Newton: derivative estimated from discrete
local sampling

● There may be many crossings
● Drop a cube around the intersection point:

it will have some vertices hot, some cold.
● While there exists a cube which has at least

one hot vertex and at least one cold vertex
on a side and no neighbor on that side,
create a neighboring cube on that side.
Repeat.

Marching cubes is common in medical imaging such as MRI scans.
It was first demonstrated (and patented!) by researchers at GE in
1984, modeling a human spine.

Voxels and volume rendering
A voxel (“volume pixel”) is a cube in space
with a given color; like a 3D pixel.
● Voxels are often used for medical imaging,

terrain, scanning and model reconstruction,
and other very large datasets.

● Voxels usually contain color but could contain
other data as well—flow rates (in medical
imaging), density functions (analogous to
implicit surface modeling), lighting data,
surface normals, 3D texture coordinates, etc.

● Often the goal is to render the voxel data
directly, not to polygonize it.

Voxels for deformable geometry

Voxels are uniquely well-
suited to large-scale,
dynamically deformable
environments.
Geometry stored in a
recursive data structure
(“chunks”, arrays of cubes
containing arrays of cubes)
can be locally edited in real
time.

Fan art from the game Minecraft
(from Deviantart.com, Wallchan.com)

Volume ray casting
If speed can be sacrificed for accuracy,
render voxels with volume ray casting:
● Fire a ray through each pixel;
● Sample the voxel data along the ray,

computing the weighted average
(trilinear filter) of the contributions to
the ray of each voxel it passes through;

● Compute surface gradient from of each
voxel from local sampling; generate
surface normals; compute lighting with
the standard lighting equation;

● ‘Paint’ the ray from back to front,
occluding more distant voxels with
nearer voxels; this is the Painter’s
Algorithm for hidden-surface removal.

Top: the steps of volume rendering
Bottom: a volume ray-cast skull.
Images from wikipedia.

Sampling in voxel rendering

Why trilinear filtering?
● If we just show the color of the voxel we hit,

we’ll see the exact edges of every cube.
● Instead, choose the weighted average between

adjacent voxels.
○ Trilinear: averaging across X, Y, and Z

Your sample will fall somewhere
between eight (in 3d) voxel centers.
Weight the color of the sample by the
inverse of its distance from the center
of each voxel.

The Voronoi diagram(2) of a set of
points Pi divides space into
‘cells’, where each cell Ci
contains the points in space
closer to Pi than any other Pj.

The Delaunay triangulation is the
dual of the Voronoi diagram: a
graph in which an edge
connects every Pi which share a
common edge in the Voronoi
diagram.

A Voronoi diagram (dotted lines) and its
dual Delaunay triangulation (solid).

(2) AKA “Voronoi tesselation”, “Dirichelet
domain”, “Thiessen polygons”, “plesiohedra”,
“fundamental areas”, “domain of action”…

Voronoi diagrams

Delaunay triangulation applet by Paul Chew ©1997—2007
http://www.cs.cornell.edu/home/chew/Delaunay.html

Voronoi diagrams
Given a set S={p1,p2,…,pn}, the formal
definition of a Voronoi cell C(S,pi) is
 C(S,pi)={p є Rd | |p-pi|<|p-pj|, i≠j}
The pi are called the generating points
of the diagram.

Where three or more boundary edges
meet is a Voronoi point. Each Voronoi
point is at the center of a circle (or
sphere, or hypersphere…) which passes
through the associated generating points
and which is guaranteed to be empty of
all other generating points.

Delaunay triangulations and equi-angularity

The equiangularity of any
triangulation of a set of points
S is a sorted list of the angles
(α1… α3t) of the triangles.
● A triangulation is said to be

equiangular if it possesses
lexicographically largest
equiangularity amongst all
possible triangulations of S.

● The Delaunay triangulation
is equiangular.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227

Delaunay triangulations and empty circles

Voronoi triangulations have
the empty circle property: in
any Voronoi triangulation of S,
no point of S will lie inside the
circle circumscribing any three
points sharing a triangle in the
Voronoi diagram.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227

Delaunay triangulations and convex hulls
The border of the Delaunay
triangulation of a set of points is
always convex.
● This is true in 2D, 3D, 4D…

The Delaunay triangulation of a
set of points in Rn is the planar
projection of a convex hull in
Rn+1.
● Ex: from 2D (Pi={x,y}i), loft

the points upwards, onto a
parabola in 3D (P’i={x,y,x2+y2}
i). The resulting polyhedral
mesh will still be convex in 3D.

Voronoi diagrams and the medial axis
The medial axis of a surface is the set of all points
within the surface equidistant to the two or more
nearest points on the surface.
● This can be used to extract a skeleton of the

surface, for (for example) path-planning
solutions, surface deformation, and animation.

Shape Deformation using a Skeleton to Drive Simplex Transformations
IEEE Transaction on Visualization and Computer Graphics, Vol. 14, No. 3, May/June
2008, Page 693-706
Han-Bing Yan, Shi-Min Hu, Ralph R Martin, and Yong-Liang Yang

Approximating the Medial Axis from the Voronoi
Diagram with a Convergence Guarantee
Tamal K. Dey, Wulue Zhao

A Voronoi-Based Hybrid Motion Planner for Rigid Bodies
M Foskey, M Garber, M Lin, DManocha

Finding the Voronoi diagram
There are four general classes of
algorithm for computing the Delaunay
triangulation:
● Divide-and-conquer
● Sweep plane

○ Fortune’s algorithm →
● Incremental insertion
● “Flipping”: repairing an existing

triangulation until it becomes
Delaunay

Fortune’s Algorithm for the plane-sweep construction of the
Voronoi diagram (Steve Fortune, 1986.)

This triangulation fails the circumcircle definition; we flip the inner
edge and it becomes Delaunay.

(Image from the wonderful people at Wikipedia.)

Voronoi cells in 3D

Silvan Oesterle, Michael Knauss

Particle systems
Particle systems are a monte-carlo style
technique which uses thousands (or
millions) or tiny graphical artefacts to
create large-scale visual effects.

Particle systems are used for hair, fire,
smoke, water, spores, clouds, explosions,
energy glows, in-game special effects
and much more.

The basic idea:
“If lots of little dots all do something the
same way, our brains will see the thing
they do and not the dots doing it.”

A particle system
created with 3dengfx,
from wikipedia.

Screenshot from the
game Command and
Conquer 3 (2007) by
Electronic Arts; the
“lasers” are particle
effects.

History of particle systems

● 1962: Ships explode into
pixel clouds in
“Spacewar!”, the 2nd
video game ever.

● 1978: Ships explode into
broken lines in
“Asteroid”.

● 1982: The Genesis Effect
in “Star Trek II: The
Wrath of Khan”.

Fanboy note: You can play the original Spacewar at http:
//spacewar.oversigma.com/ -- the actual original game,running in a
PDP-1 emulated in a Java applet.

“The Genesis Effect” – William Reeves
Star Trek II: The Wrath of Khan (1982)

Particle systems

How it works:
● Particles are generated from an emitter.

● Emitter position and orientation are specified discretely;
● Emitter rate, direction, flow, etc are often specified as a

bounded random range (monte carlo)
● Time ticks; at each tick, particles move.

● New particles are generated; expired particles are
deleted

● Forces (gravity, wind, etc) accelerate each particle
● Acceleration changes velocity
● Velocity changes position

● Particles are rendered.

Transient vs persistent particles
emitted to create a ‘hair’ effect
(source: Wikipedia)

Particle systems—implementations
Closed-form function:
● Represent every particle as a

parametric equation; store only
the initial position p0, initial
velocity v0, then apply fixed
acceleration (such as gravity g.)
● p(t)=p0+v0t+½gt2

● No storage of state → small
memory footprint

● Very limited possibility of
interaction

● Best for fire, projectiles, etc—
non-responsive particles.

Discrete integration:
● Update every particle separately;

this can be expressed as a loop
over a list, or as a mutation of a
texture (if using a GPU), or as a
massive matrix multiplication
operation (if using CUDA)

NVIDIA

Particle systems—rendering
Can render particles as points, textured polys, or
primitive geometry
● Minimize the data sent down the pipe!
● Polygons with alpha-blended images make pretty

good fire, smoke, etc
Transitioning one particle type to another
creates realistic interactive effects
● Ex: a ‘rain’ particle becomes an emitter for

‘splash’ particles on impact
Particles can be the force sources for a
blobby model implicit surface
● Nice for simulating liquids

nvidia

Hagit Schechter
http://www.cs.ubc.
ca/~hagitsch/Research/

NVIDIA: Position Based Fluids

References
Voronoi diagrams
M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, “Computational Geometry: Algorithms and Applications”, Springer-Verlag,

http://www.cs.uu.nl/geobook/
http://www.ics.uci.edu/~eppstein/junkyard/nn.html
Implicit modelling:
D. Ricci, A Constructive Geometry for Computer Graphics, Computer Journal, May 1973
J Bloomenthal, Polygonization of Implicit Surfaces, Computer Aided Geometric Design, Issue 5, 1988
B Wyvill, C McPheeters, G Wyvill, Soft Objects, Advanced Computer Graphics (Proc. CG Tokyo 1986)
B Wyvill, C McPheeters, G Wyvill, Animating Soft Objects, The Visual Computer, Issue 4 1986
http://astronomy.swin.edu.au/~pbourke/modelling/implicitsurf/
http://www.cs.berkeley.edu/~job/Papers/turk-2002-MIS.pdf
http://www.unchainedgeometry.com/jbloom/papers/interactive.pdf
http://www-courses.cs.uiuc.edu/~cs319/polygonization.pdf
Voxels:
J. Wilhelms and A. Van Gelder, A Coherent Projection Approach for Direct Volume Rendering, Computer Graphics, 35(4):275-284,

July 1991.
http://en.wikipedia.org/wiki/Volume_ray_casting
Particle Systems:
William T. Reeves, “Particle Systems - A Technique for Modeling a Class of Fuzzy Objects”, Computer Graphics 17:3 pp. 359-376,

1983 (SIGGRAPH 83).
Lutz Latta, Building a Million Particle System, http://www.2ld.de/gdc2004/MegaParticlesPaper.pdf , 2004
http://en.wikipedia.org/wiki/Particle_system
http://www.darwin3d.com/gamedev/articles/col0798.pdf
http://mmacklin.com/pbf_sig_preprint.pdf

